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I. INTRODUCTION

Estimation of a density function has drawn considerable attention in
the literature over the last two decades. Examples of practical situations
calling for the estimation of a density can be found in the works of several
authors, e.g., Murthy (1965), Singh (1977b), Liang and Krishnaiah (1985),
among others.

In one of the pioneering papers on the problem of non-parametric
estimation of a continuous density, a very useful and rather disappointing
observation was made by Rosenblatt (1956). According to this observation,
any reasonable estimator of a continuous density cannot be unbiased.
Therefore, any attempt to improve upon the bias, M.S.E., or rates of con-
vergence involved in the asymptﬁtics, becomes a desirable exercise. The
work reported here is an attempt in this direction.

While treating an inference problem relating to a variate Y, a
possible approach to gain in precision is to incorporate a concomittant
random variable X along with Y. A considerable part of statistical
1iterature has been devoted to this approach. In Section 1 we have proposed
some estimators of a univariate probability density function f(y) of a
r. v. Y based upon a set of observations taken from a bivariate joint density
B(x,y) of Y and a suitably chosen concomittant r. v. X, so that
f(y) = I B(x,y)dx. The estimators have been constructed using some well
known heuristic methods employed in some known areas of statistics but never
applied in the area of density estimation. Although the asymptotic properties

and rates of convergence of these estimators are the same as those of the

usual estimator which does not depend on the data on X, we give sufficient
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conditions on 8 and the marginal densities of Y and X under which
the proposed estimators would perform better than the usual estimators in
the sense of |Bias| and the MSE. The ideas developed here can easily

be extended to the case when Y and X are both multivariate.

Different methods of constructing estimators, apparently none better
than others in a global sense, (Watson (1969), Wegman (1972a),(1972b)),
9 have appeared in the literature. However, we have adopted the most widely
il used Rosenblatt (1956) - Parzen (1962) type Kernel method.

[ In Section 2, we have also looked into the problem of estimating a

conditional density g(y|x) of a r.v. Y given another r.v. X based on

a set of paired observations on (X,Y) -~ 8(x,y) and a set of additional
observations on X ~ f(x). This problem without the use of additional data
has been treated by Rosenblatt (1969). We have obtained better approximation
for the variance as compared to Rosenblatt (1969), and have given sufficient
conditions on 8 and f under which the use of additional data on X gives
smaller absolute error and variance (and henée the mean squared error) than

those obtained without using the additional data. These conditions need to

be examined more carefully to ease their accessibility to practical problems.

| Accesion For

NT!IS CR3i%
) CHo Tan ?q |
- ) O S ‘ !
\'t JL\L N 00 {
= | By

F Cititatin
. Avaictidity Coies

, Avall and/or
Dist Special




1. RATIO TYPE KERNEL ESTIMATORS OF A DENSITY

In order to estimate a continuous density f of a random variable VY,
the design proposed is to sample from a bivariate population (X,Y) ~ g8(x,y)
where X ~ y(x) 1is a suitably chosen concomitant variable such that

f(y) = fs(x,y)dx and y(x) = [s(x.y)dy-

We first treat the case when ¢ is a known density. It is possible to

conceive of situations where this may be the case. However, some of the
results obtained under this assumption will be used in treating the other

S case when y 1is unknown.

1.1 THE CASE: vy KNOWN

Let (Xi,Yi), i=1,2,...,n be a sample 8(x,y).
Define

- 1 N (Yi'

) =R LK\

A 1 P Xi-
i) = 7R L K T)

where 0 <h=h(n) +0 as n-+=, and K is a Borel-measurable bounded

function on the real line such that

IK(u)du =1, Iu K(u)du = 0, qu K(u) < =,

JIK(u)ldu <o, and |uk(u)] +0 as |u] > =
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Throughout the remainder of this, we denote IKz(u)du by LZ(K) and
271 I uZK(u)du by ~k,.

We propose a ratio type estimator of f(y). For y € S¢ = {v: f(v) > 0},
define

faly) = ﬂ(y)w(X)/@n(X)

where x 1is a suitably chosen point from S¢* + The estimator fR is well

defined as it follows from Parzen (1962) that

P[fn(.V)>0] +1, yye Sf

and
P[@n(x)>:0]-+ 1, vxes,
as n > =,
Let
6, = {F,(y) = Ef_(y)HEF (y))7]
and

sq = 0 (x) = Bo (O HEN(x))

* The estimators- ?n(y) and Jn(x) are standrad non-parametric estimators
of the respective densities f and y based on a technique proposed by
Rosenblatt (1956) and later extended by Parzen (1962) to the now familiar

Kernel method of estimation.
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Now, for the rest of this section, we will assume that

yeCes Sf(—\{y: f"(y) Continuous}

and

yeCw.

For simplicity, we will not write the argument of any function, i.e., we

will write ¢ to denote ¢(-). Momentarily, we will drop the subscript

n from fn’ Yo € and L

In terms of the r.v.'s € and &, we have

%R = e Ef - (E@)'l{(1+e)(1+6)'1}
and
£ = o2 . (EN2E 21+ 2(1e) D

-3/2

Ignoring the terms of the order 0(nh) and lower (See Remark 1.1 below)

in the expressions for E?R and E%é, we can write

Efp = v - EF - (€0)" L{1-E(es)+E(62 )}
(1.1)

2

£fe = y2(ER)2(E)) 211-EcP-bE(es )43 E 6%)

.............................
............

-----------------------------
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This gives, again ignoring the terms of the order 0(nh)"3/2 and Tower,

an approximation for the variance

oz(?R) = v2(EF)2(E9)"2(E62-2E (e5)+Ec?) (1.2)
= y2(E9) 24 ()

+ 42 (eF/E3)2(E%-2 E(c6))

1.1 REMARK

In the approximation (1.1) of E?R, the error of approximation, in

absolute value, is less than E[(1+e)(1+6)-1(-63){ and

B 3] < (8 —Lapnl/2(E (14)%6531/2
(1+6)
where

1+8 = @/E@n = w(say)

follows, as n + =, a normal distribution with mean 1 and variance
o?[w] = o(nh)™L, in fact
2r= a1 vx) 2
c“[w] ~ (nh) — fK (u)du
[Ev,]

[see Parzen (1962)].
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Consequently,

1 1
E(Ez) = E(Ez Ilﬁ-1| > 7 log nh/v’m‘r)

1
* E(af IIv'v-ll < 1 log nh//ﬁﬁ)

ii < (14 log nh/vAR)"2 P (/AR [W-1] > © log nh)
+ (l-1 log nh/\/F\'F)'2 P (/nh |w-1| < t Tog nh)

=1 +o0(1)

Further, since (1+e) 2 N(1 , 0(nh)"1) and & 2 N(O , O(Nn)™1), it follows
that

(E[(1+e)2 a‘s])l/2 = 0(nh)~3/2

Similarly, it can be shown that the error of approximation (1.1) of

E(%R)2 is 0(nh)"3/2,




It follows from Singh (1977) that

: EF = £ + fok,nZ+0(h?)
: By = ¢ + w"k2h2+0(h2)
o?(F) = (nh?) [EK® h1(¥,-1) -2k h7L(Y,-1) 1 (1.3)
= ()t L, (k)
+ 7} {f'Jsz(v)dv-f2}+0(n'1h)
(%) = (nh) v L,y (k)
+

n-l {w'[ukz(u)du-w2}+o(n‘1h)

Further, since

cov(?.i) = (m™2 3 cov (kw7 ey kv xg-n0)
i=

=l JJk(u)K(v)B(x+hu,y+hv)du dv

([k(u)w(xmu)) (IK(v)f(y-l-hv))

n'l{s-wf}+0(n'1h)

(1.4)

provided first order partial derivatives of B are continuous at (x,y).




Now we will prove our main theorem:

1.1 THEOREM

For v ye Cf and ¥ x € C, such that the first order partial

¥
derivatives of g are continuous at (x,y),

Efg = F + h2 ky(F'=y" /) + O(h)

o2(%R) = 2(f) + A+ 0(n 1) (1.5)

- where

A =162 do2(Fu)(a-fy)

+ g2 <¢' uk?(u)du - wz) + (hw)'lsz(u)dl}

and

02(;) as given in (1.3).

PROOF. From (1.3) and (1.4)

Ee2 = o2(F)(EF)2
-2 {(nh)'lfIKz(u)du

n'l(f' quz(u)du-fz) + O(n'lh)}

+

E(62) has a similar expression with f being replaced by v.
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and

- - <1
E(es) = (Fy)7! n"lig-fy1 + o(n"th).
Now (1.2) and (1.3) followed by the expressions given for Eez, E62
and E(es) complete the proof of the theorem.

The following corollary is an immediate consequence of Theorem 1.1

1.1 COROLLARY

If IuKz(u) =0 (e.g., uniform or standard normal kernel) then

o2(F) = (nh)lf !Kz-n'l 2+ o(n7ly,

and
02(?

2) = (nn) L fa(£2yy) sz-zn‘l(u L4y + otn”h)

1.2 REMARK (COMPARISON OF f. WITH THE USUAL ESTIMATOR f)

"N

Under the similar conditions, EF = f + hzsz" + o(hz). Comparing
this with the E%R in (1.5) we see that lBias(%R)l < |Bias(f)| if and
only if 0 < (p"/f") < 2¢. For example, with f(t) = y(t) = (2n)'1/2exp(-t2/z),

this condition is satisfied if

<1+ 2(y%-1)f(y) for ly] > 1, and if x2 3‘2(1-y2)f(y) for |y| < 1.
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Comparing the variances of fR and ?, we see that az(?R) < oa(?)
if and only if

h~! [Kz <2 ﬁ}f + (1.7)

Thus, if concomitant variable is chosen in such a way that X and Y
have positive dependence (i.e., P[X<x,Y<y] > P[X<x] P[Y<y]), all we need
is to choose x and K such that h~! Ikz < p(x).
If (2w(xly)-w(xi>‘3 Co(xsy) > 0, where y(x|y) is the conditional density
of X at X =x given Y =y, then we can always satisfy (1.7) by choosing
x and K to make h-1 sz.i Co(x,y). Since the choice of X 1is at our

will, for a given y it may be possible to include a concomitant variable X

in our design and to choose x such that 2y(x]y) > y.




.....
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1.2 THEOREM ASYMPTOTIC NORMALITY

If h = o(nh)'llz, then
()2 (Fe-r) 2 w0, P2y (),

PROQF.

Since E(es) = O(n'l) and 02(6) = O(nh)'l, we write
fo = ENEDT ¥ 1+ c - 6+ 0 (nh)1.
Therefore,

(nh)}/2 (Fo-F) = (nm)1/2 UER) ()L
(1.8)
+ ()2 () (ED)T v (e-8) + 0 (nn)72

From (1.3), (F%-- (EJ»)‘1 o« Y - f) = O(hz), the first time on the right hand
side of (1.8) s o(1). Further, since (nh)1/2 (F-gf) B N(0 , f sz) and

(nh)2(3-0) B Neo , v [KZ) by Parzen (1962), and Cov(e,s) = 0(n"1), we
conclude that the second term of the rhs of (1.8) is asymptotically normal

with mean zero and variance (fz)[(f)'1+(¢)'1] fKZ.

The proof of the theorem is now complete.

.....................................

............
.....................................
o
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1.3 REMARK

In computing the asymptotic variance of (nh)l/2 %R we have ignored

the terms of the order 0(h) and Tower, and hence the asymptotic variance

~

of (nh)ll2 fR turns out to be larger than f IKZ, the asymptotic variance

of (nh)l/2 %. We have, however, seen through the proof of Theorem 1.1

that if we retain the terms of order O0(h) 1in computing the variance of

~

!. (nh)l/2 %R’ then there exist situations where fR has smaller variance

~

& and MSE compared to those of the usual estimator f.

1.2 THE CASE OF UNKNOWN y.

Since the choice of the concomitant variate X is at our will, we

A
s % e St e

choose here that concomitant variate X which is extremely cheap to measure
compared to Y variate so that we can have a very large sample on X with
very little extra budget. For example, if Y is some biochemical content
in a plant and X 1is chosen as the weight of the plant, the above condition
is satisfied.

Let 8 denote the joint pdf of (X,Y) so that f(y) = [B(x.y)dx
and v (x) = fs(x,y)dy. Let Z;,....,7, be n, additional i.i.d. observations

a

3 on X, independent of the paired data (XI,YI),...,(Xn,Yn) - 1.1.d. according

to 8. We take n, Tlarge enough so that (naha)'1 = o(n'l) where h = h(na).

Define

; W(x) = (n,h)h nia (%)
) = n [
f v aa j=1 a
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Our proposed estimator of f(y) is

faly) = 20 . )

~

¥(x)

where y ¢ Sf and x ¢ SW' For the sake of simplicity, we will again not

display the arguments in functions like ?R(y), ?(y), etc.

Since Ep = v +0(h %), it follows from subsection 1.1 that
efply) = £( S0} . k) = £+ 0(d).
R v(x)

Now we examine the variance of %R' Since for independent random variables

W and V,

G2 (WV) = EWC.EVZ - EZW.EZV

= 2(W)2(V) + EZW)2(V) + E2(V)P (W),

we can write with %R as given in subsection 1.1,

F(FQ) = (;f)ozwi) + EZ(%) A) + () 2(5) ”
- 02(%';) _ff.(é;.). + (EfR)? iz_gﬂ + .(Ejzﬁ ()
L] ’ v

=0 ((nh)'l('naha)'l) +0(nh,)"! +(1+o(h§)) oz(%R)

NI TS T R T e Y S S S S T S RSO S T e e e e e e e et e

7

R ER S |
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Since

A (Fg) = 0, P(3) = o) and EF, = £ + o(h?)

Thus, since (naha)'1 = o(n'l), we have
() = o2(F) + o(n™l) = G2(F) + A+ o(n”})

where A 1is as given in Theorem 1.1. Therefore, the conclusion of Remark
1.1 continues to hold.

With regard to the asymptotic distribution of ?R, we note that

v = -1/2 _ -1/2
Hence

-~ ~

fr=fr* °p(“-1/2)

and
(h) Y2(5p - £) B (nn) 25 - 1) B N(o , fz{f'lw'l}[xz)

from Theorem 1.2

1.4 REMARK REGRESSION TYPE DENSITY ESTIMATORS

We propose a linear regression type density estimator of f as

) = ) = b (300 - 9n))
Then
£y = £+ b, (f"(y) - bw"(x)> + o(n?),




2SS

Lt g

.................................

16

and
Aty = 2 (F0) + 6% (§00) - 25 cov (F) J,(x)>

where oz(%) . oz(G) and Cov(? . @) are as given in (1.3) and (1.4).
Thus

o (f),) < o (%(y))

2 Cov (f n X
b2 < 2b _z.(_SLL_._M_)l
- g (w(x))

= 2b __Jiiz_iﬂﬂ__
h'leK? - 42

if and only if

2. ESTIMATION OF A CONDITIONAL DENSITY

Let g(y!x) = 8(x,y)/f(x) be the conditional density of Y|X = x,
where the couple (X,Y) ~ 8(x,y) , X -~ f(x) = Js(x,y)dy and f(x) > o.
Rosenblatt (1969) treats the problem of estimating g on the basis

of a random sample (XI’YI)""’(Xn Yy ) from the joint distribution of

C c

(X,Y). We are also going to estimate g but under a data set up which is
slightly more general. In addition to Ne paired observations (Xi,Yi)'s
we also have additional data on X, i.e., a sample from the unijvariate

distribution of X,

Set




Y 17

and

= Xj for j =1,2,...,nc
g 3
= Uj_nc for j =n.+l,... N

Let h(t) be a positive function such that

h(t) + 0 and the(t) + =

E as t > =, Set
’ hc = h("c)’
i h = h(n_+n,)
and note that, as n. > o,
hc +y0, h +0, nchi > and Nh+ =,
-i Further, let B(u,v) be a Borel measurable bounded function defined
3 on R2 such that as
[1Cusw)]| > =, [l(u,v)|| [B(u,v)| +o.
We also assume that
If |B(u,v)|du dv < =,
IIB(u,v)du dv = 1,
:
AT e S T e e e e T RIS




.......................................................
P D Y

TN
A b e W W o e i,

IJUB(u,v)du dv =0 = I[vB(u.v)du dv

Also, let K be Borel-measurable bounded function defined on the real line

such that
11 -
-u—liao' IUK(U” = 0,
I|K(u)|du <o, IK(u)du =1, IuK(u) =0
and

quK(u)du < ™,

Having chosen the weight functions B and K and the sequence of bandwidths
{h(n)}, we propose the following estimator for g(y|x) at a point of
continuity (x,y) of B(x,y) such that f(x) > o.

Define
gpslyIx) = B,,c(x.y) / Fy(x)
with
Fy(x) = (wn)! I K (h'l(ZJ.-x)>
and

n
a - Cc - -

.......
--------------------------
.................................
i AT A AAR IR T Pt A e S L S T L I IS D A A N TR S TP T T S At N P T S S A S
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2.1 REMARK

It follows from Parzen (1962), that if f(x) > o, then
PLfy(x) > 0] + 1 and P[f (x) > 0] » 1. Therefore, g,s fis well-defined
c
in probability.

2.2 REMARK

When there is no additional data, i.e., the case when n, = 0, §AS

reduces to the estimator studied by Rosenblatt (1969);

alylx) = 8, (x,y) / fp (x)
c (o
where n
? _ -1 ) ¢ -1
nc(x) = ("chc) 1 K (hc (Xj-x))

It is well known, (e.g., Rosenblatt (1956) and Cacoullos (1966)), that
?N(x) as an estimator of f(x) and énc(x,y) as that of B8(x,y) are
consistent in quadratic mean. Intuitively, we expect 9ps to estimate g
consistently. We prove this and other results in the remainder of this
section.

As before, for the remainder of Section 2, we will not display the

arguments in the functions defined above.
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2.1 ASYMPTOTIC APPROXIMATIONS FOR BIAS, VARIANCE, AND THE DISTRIBUTION

OF gp(ylx).

In this section we show that aAS as an estimator of g 1is asymptotically
unbiased, consistent in quadratic mean and asymptotically normal just like the
usual estimators of g(y|x) proposed by Rosenblatt (1969), which are based
on only paired observations. Approximation for the bias and variance obtained
here for aAS’ specialized to the Rosenblatt's case (i.e., when n, = 0),
are better than those noted in Rosenblatt (1969). We further give sufficient
conditions on g and f under which the absolute bias and variance of
aAS are smaller than those for § obtained by Rosenblatt.

Although we have investigated the asymptotic properties with n, + =,
we have observed (though not reported here), through Monte-Carlo simulation
that for ne fixed the estimators §A5(¥|X) proposed here have in some
cases smaller mean squared error than the usual estimators.

It is well known (e.g., Singh (1977)), that if f", the second derivative
of f, is continuous at x, then with 11(x) = f“(x)fuzk(u)du / 2 and

LZ(K) ='IK2(u)du, we have

EFy = f + W21y + o(h?)

A - 2 2
E fnc f + hcll + o(hc)

. (2.0)
oF(Fy) = ()71 £ L,(K) + o(hn)7]

(F ) = (nh ) £ LK) +o(nh )L,
c

S I T I A T e e R S SR B R U Lt e S M St L P ot L AR T 1
> .r'. CRCICIC AL _-.‘--. ."--.,‘-. RSN . L ('_-- a_‘l' 1'_'- .'-.._-. SRR I AR *Tam S e, S
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and with
2 . 2 .
15(x,y) =.ﬂz§§§§11 ffuzB(u,v) +.§_§§§f¥l IIVZB(u,v)du dv
and

L,(8) = stz(u,v)du dv,

Choosing B in such a way that IfuB(u,v)du dv = 0

= vaB(u,v)du dv, we obtain from Rosenblatt (1969) and the techniques used
in Theorem 1 of Parzen (1962) that

Eén =g+ hﬁlz + O(hﬁ).
C

cz(én ) = (nch§i°18L2(B) + (nchc)"1 %% . f[uaz(u.v)du dv
c

3B 2 -1
+ W vaB (uyv)du dv + o(nchc)

= (nh2)"18L,(8) + o(n.h )72

For the rest of this section, put yl(x) = 11(x) / f(x) and

Yo(x,y) = {1,(x,y) / 8(x,y) - 1,(x) / f(x)}. As with others, the functions
Y, and Yo will be displayed without their arguments.

Let

- - NS |
e= (8, - Eg. )Es. )
nC "c nC

and

s = (fy - Efy(ER
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Then, in terms of € and &, we have
dps = (E8, MERY™ 1(1 + &)1 + )71y, (2.2)
c

It is well known that ¢ and & are op("chc

172 and Op(Nh)'llz
respectively. Further, these are asymptotically normal random variables

with mean zero and with their variances tending towards zero as nchg + ®
in case of ¢ and as Nh + » in case of 6. Therefore, it follows that

-~ _ -~ "~ _1 2 - '-3/2
9ps = (EB,,C)(EfN) (1+¢c-6-e8+81+0(nh)""%, _ (2.3)

Further in view of the comments made in Remark 1.1 of Section 1, it

- follows that

Egps = (Eanc)(E%N)'l {1 - E(es) + E(69)} + 0(nch)'3/2

and (2.4)

E(9R) = (€8, )2(EF) 2 (1 + €S
Cc

- 4E(es) + 3667} + 0(n_h)~/2

With the above observations, we are now able to prove asymptotic
unbiasedness, quadratic mean consistency, and the asymptotic normality of
aAS’ Throughout the remainder of this section, we assume that hC = h(nc)

is such that An 3 hc/h + A <o and K 1is such that
c

K(Acu) + K(xu) a.e., in u as n -+ o (this is assured if K is continuous

a.e.). To prove our main results, we make use of the following lemma.




23

2.1 LEMMA

If 8 is continuous at (x,y), then

e
@
o
<,
).
s:\'
>_.'
;
e

CovlB, » fy) = (Nn)7LeL, (kB) + o(Nn)™!

c
where
LA(KB) = IJB(U,V) K(Au)du dv.
PROOF.
Eé Since (Xj,Yj) »J = 1,...,n, are i.i.d. and are independent of
r. {Uj 1 j = 1’°°°na}’
¥
3 ne x-X y-Y x=X
Cov(B, » fy) = (nchimx)'l{_l Cov (B(—h—l . 4 K(—ﬁ—l»
c j= c c
-1 N
= (Nh)"" [A  -A' ]
e Ne
where
. g X=X y-Y x-X
-2 X-* 1 1
A = h [B ’ ]
2 G S
and
: - _2 X-xl y"Yl X-xl
Ao, ™ e £8( i e (—5)-

Now consider first An . We can write
c

1A, - 8L (KB)| < vq(x,y.ng) + vo(x,y.n,)

c

where

v1(X,yan,) = lIf <F(x ~hu,y=-hyv)- a(x,y)) K(Au)B(u,v)du dv|

ERX L n.-'.-.'-...
AREIARCR LN \ PRI
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and

Yz(x9.Y9nc) = B(x,y) |IJ{K(Ancu) - K(U)} B(U,V)du dV'.

Since K 1is bounded, it follows from Cacoullos (1966) that Y = o(1),

and since K(xn u) - K(xu), by dominated convergence theorem, Y, is also o(1).
c
Hence, An = BLX(KB) + o(1).
c

Further, from Cacoullos (1966),

x=X y-Y )
1 1)_.,2 2
EB ( hc ’ hc = hC B(Xs.Y) + o(hc)

and

x-X1
(14 _h_> = hf(x) + o(h).

Therefore, Aﬁ = hgf + o(h).
c

The proof of the lemma is now complete.

2.1 THEOREM ASYMPTOTIC UNBIASEDNESS

If the second order partial derivatives of B8 are continuous at

(x,y), then

a(y1x) 2y, (x,y) + (hZ - h2) v, (x)

()7t ) () - 8K (2.6)

o(max {hg . (Nh)'l})].

E (ﬁAs(ylx) - g(yIX)>

+

+

.................... e teataTe et

RN . BN AN
hatatalatatatation wow.a.at, st ot -':1
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PROOF.

It follows from (2.0) and Lemma 2.1 that

E(c « 6) = (€8, )M (EF) ™) Cov(B, . fy)
C c

(2.7)

= ()1 £(x) 1L (kB) + o(Nm)™!

This result accompanied by (2.4) and (2.0) gives

) 1, ) h
EgAS = g[ (1 + —5 + O(hc)) (1 + -~

which finally gives (2.6).

2.2 REMARK

Notice that if (Nh)'1 = o(hg) , then the bias in Theorem 2.1 is giien
by

) 1,02 1, (x)h?
E (gAs(ylx) - g(ylx)) = 9(y|x) §(x,y, £ - }(x,ﬂ + o(hﬁ). (2.6)

The right hand side of this equation with n, = 0 reduces to what Rosenblatt

a
(1969) has noted for the bias of the estimator '§.“wrft1ng'(2.6)' as

£(Gps1x) - sty1x) = stylx) o vylx)
(2.6)"
+ glylx)(h2 - 1) vy (x) + o(h?)

we see that the first temm on the right hand side of (2.6)" is the bias of
§ with no additional data.




Thus, we conclude the following corollary:

2.1 COROLLARY

Let (Nh)~! = o(hi). Under the hypothesis of Theorem 2.1,

|bias of gyg(y|x)| < [bias of gly|x)]|

hl if and only if yz(x,y) and yl(x) are of opposite signs and

h2
( - F) Iy ()] < 2lvp(xay) .

C

2.2 THEOREM VARIANCE OF _gyo

If 8 is continuous at (x,y), then

o <§As(y|x)) - glylx) (f(fx))'1 (M) Lg(ylx) (Ly(K)-2L, (KB)}
(2.8)
+ (n )1 1L,(8)7 + o(max (W)L, (nn )1,

PROOF.

It follows from (2.4) that
o? (&As(ylxi> = (€8, )2(EF)"2 (E6% - 2Ecs + E2) + O(n )" /2
(o
In view of (2.0), (2.1), and (2.7), the right hand side is
2 -1 -1 -1
Pyl {om) (f(x)) 1L, (K) - 2L, (KB)} + o(Nh)

+ (nchz)"1 (F(x,y)) -1 LZ(B) + o(nchc)'l]
which is the right hand side of (2.8).

This completes the proof of the theorem.

. .," ..“.. AP I " e,

* e ."'l.t
PP B ]
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2.3 REMARK

The estimator proposed by Rosenblatt (1969), which is only based on a
set of paired observation, coincides with our estimator in the case n - 0.

However, his approximation to the variance of alylx) is
(n.h2)"2 g(y[x) L,(B) / £(x) + o(nh)]
e 2 e

which is strictly larger than the approximation obtained by us. For the

case n, = 0, our approximation for the variance of é(ylx) is
(n.h2)"1 gy]x) Ly(B) - (nh)! g2(y|x) Ly(K)} 7 F(x) + o(nh_)~2
c'c 2 c YiX) L2 c"c
The following corollary is a consequence of Theorem 2.1 and 2.2.

2.1 COROLLARY QUATRATIC MEAN CONSISTENCY OF é_

Under the conditions of Theorem 2,
MSE [.‘:‘As]'
= [y, w7ty n2y)
+ ()72 L,k - 2L (k8)y (2.9)
+ (nh2)"1(8)"1 L,(B)

+ o(max (M), (nh )71y

..................
................................




.........
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2.4 REMARK

If o*"(max{(Nh)'1 , (nchc)'1{> is ignored,

then
MSE [QAS] =W+ W,
where
W, = g [hg Y5 + (n-chg)'l(s)'ll.z(s)]
and

o2 o fnz 2y 2 L2

When né = 0, the case of no additional data, wz =0 and wl is
the MSE of a(ylx). as is also noted by Rosenblatt (1969). Thus, we

have the following corollary.

2.2 COROLLARY

If o(max{(Nh)'1 s (nchc)'1}> is ignored, then under the hypothesis

of Theorem 2.1
MSE [ﬁAs(ylx)] <[MSE §(y|x)1

ﬁ; if y; and vy, areaof opposite signs, and

oy
. P
P N

(1 - B2/2) 1y, (x)] < 2lvp(xay)], (2.10)

The conditions stated in the corollary 2.2, under which one would recommend

the use of additional data, are not of practical utility. They need to be

e
‘['.
h"
.

examined more critically. Our conjecture is that aAS will not perform

Pd

better than 5 in the case of strongly dependent variables X and Y.

R | et AL S
. -J-i'.'- R

........................................

-'h'-_'t"."-.- LI R e O s P S S A Y .\\","_'\."--'v,'-_'-_'-.'-'." LR D R .'_.‘ .
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2.3 THEOREM ASYMPTOTIC NORMALITY OF §As_

' 241/2 - 2 -1, 2, -1,1/2 _
If (“chc) o(hc) and (ncN hch ) o(1),
then

8207 (Gpstotn) - stv10) 20 (0 k) () p?) 2w

PROOF.

From our foregoing analysis, it follows that

5 = op(Nh)'l/2 , €6 = op(Nh)'1 and &% = Op(Nh)'l_

Therefore, from (2.3), we can write

(V2 (3ps - 9) = ngDV2 12 5, - (EF7 - )

2,1/2 - 2 =1
+ (nchc) . Eenc . (EfN) e e + op(l)

(2.12)

In view of (2.0) and (2.1), the first term of the right hand side of
(2.12) is o(1). Further, since from Cacoullos (1966),
wev1/2 [ 4 - D
(nhe) (B"c - E(B“c) — N (0 . 8L2(3)>>,
the second term on the right hand side of (2.12) is asymptotically normal

with mean zero and varjance ¢ - (f)'le(K). The proof the theorem is

now complete.
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